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Surface fractals probed by adsorbate spin-lattice relaxation dispersion
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Spin-lattice relaxation of strong adsorbates confined in disordered structures such as porous silica glass is
treated on the basis of a relaxation mechanism due to “reorientation mediated by translational displacements.”
In such a situation the low-frequency spin-lattice relaxation dispersion beyond the regime where local reori-
entations dominate reflects molecular dynamics as well as the surface geometry on a length scale longer than
1 nm. It is shown that the power law frequently observed for the spin-lattice relaxation dispersion in porous
media can be traced back to surface fractality. The fractal properties of rough surfaces and the statistics
governing surface displacements enter explicitly in the expression for the dipolar correlation function. The
surface fractal dimension can thus be evaluated from the low-frequency spin-lattice relaxation dispersion
accessible by field-cycling NMR relaxometfy51063-651%99)12905-2

PACS numbes): 61.43.Hv, 68.35.Ct, 68.35.Fx, 76.60.Es

[. INTRODUCTION bate molecules employed to probe the surface, aiglthe
correlation length10—13 whose maximum value is typi-

Adsorbate molecules on surfaces may be subject to fasially determined by the pore size. The surface roughness is
reorientations about a preferential axis, depending on the Igsonsidered to consist of height fluctuations of the surface
cal surface orientation and the binding properties. The corret€lative to a reference base plane of second order forming a
sponding correlation times tend to be close to those in théopologically two-dimensional space. The actual rough sur-
bulk liquid. However, the reorientation of adsorbate mol-face, i.e., the elevations relative to the base plane, is de-
ecules on these grounds is restricted to a limited solid-anglécribed by the functioh=h(x,y) assumed to be self-affine,
range as long as the adsorbate molecules reside at the saMiBerex andy are curvilinear coordinates in the base plane,
surface sites. On the other hand, in the “strong-adsorptiomnd(h)=0 (see Fig. 1 Self-affinity means that the scaling
limit,” which typically applies to polar liquids confined by relation
polar surfaces, apparent correlation times up to eight orders
of magnitude longer than in the bulk have been observed h(Ax,Ay)=A"h(x,y) 1)

[1,2] using field-cycling NMR relaxometr{3].

It has been shown that the low-frequency spin-lattice reis satisfied, wheréd is called the “roughness’{or Hurs)
laxation dispersion occurring under such circumstances igxponent. The parameter is related to the “surface fractal
closely related to displacements along the surfaces. Intrametimension” D¢ by D =3—H. Experimental data foD in
lecular nuclear dipole-dipole couplingst,5] as well as the range 2D <3 were measured with the aid of scanning
nuclear interactions with electron paramagnetic impurities orelectron microscopy14], scattering[15,16 and adsorption
the surfacé6,7] have been discussed. In this study we solely[17] for different porous materials. The valuz,=2 indi-
refer to situations where the latter are definitely negligible, agates a smooth surface, aﬁq: 3 a comp|ete|y Compressed
shown in Refs[1,8], for porous Bioran glasses, for instance. “crumpled membrane.”

As a low-frequency adsorbate relaxation mechanism There is a number of reports in the literature in which
dominating in diamagnetic matrices, “reorientation mediatedNMR parameters of systems such as cross-linked polymers,
by translational displacement§RMTD) has been identified cement gels, and blood plasma gels have been related to
[4]. That is, the low-frequency fluctuations of the spin cou-fractals[18—21]. In the present work, we show how the sur-
plings occur due to adsorbate diffusion effectively takingface fractal dimensioD can be deduced from the spin-

place along thérough and shapedurfaces. The mechanism |attice relaxation dispersion probed by field-cycling NMR
has also been considered in a recent computer simuljon relaxometry.

Spin-lattice relaxation caused by RMTD was shown to be the
combined effect of molecular dynamics and of the surface »
structure. That is, structural and dynamical features contrib- 4
ute to the reorientation process independently. For the de- h = h(x,y)
scription of the surface structure the orientational structure
factor has been introduced that is a two-dimensional ana-
logue to the static structure factor known in scattering theory
[4,8].

The main objective of this work is to extend the consid- base plane
eration to the case when the surface has fractal properties.
Surface fractals describe the roughness in the range of scale FIG. 1. Schematic representation of a rough surface and adsor-
invarianceag<r <¢, whereay is the diameter of the adsor- bate molecules oriented perpendicular to the surface if adsorbed.

.
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The static structure factor is defined as and decays from the initial value 1 to 0. The brackets indi-
cate averages over all initial and final orientations probed by
I~ R D —ik-ry3 a molecule on a time of the order ®f. In the following we
Seek)=(e"") J gsd(re d @ ill assume that(F(1)|2=0 for simplicity.

] ] ] ) ) For intramolecular interactions, the correlation function
where gs((r) is the pair correlation function or density- gecay solely reflects molecular reorientations. For quadru-
density correlation funct|0|(x_)f the random surfageandk is pole interaction, the same relationship as given in &.
the wave number. In the limk>¢™*, the structure factor petween the spin-lattice relaxation rate and the reduced in-
and the pair correlation function take the foftb] tensity functions applies, apart from different prefactors

~ b6 [3,22].

Sso(k) ks ) In the bulklike phase, orientational correlations are cut
back by fast, more or less isotropic rotational diffusion. This
situation is to be distinguished from that of molecules ad-

_Ay3-D sorbed on the surface, for which the RMTD mechanism
Osc(M)=1—Ar""s, 4) : . :
comes into play on a time scale long compared with that of
respectively. restricted rotational diffusion occurring locallg-5]. An ad-

In the following, we will translate this approach into the sorbed molecule tends to be oriented in a preferential direc-
RMTD formalism describing the low-frequency spin-lattice tion relative to the local surface. If displacements take place
relaxation dispersion of adsorbate moleculegfoactal) sur-  effectively along a rough and shaped surface, the adsorbate
faces. We will then analyze experimental data obtained witinolecule will change its orientation according to the surface
liquid dimethylsulfoxide and malononitrile in a porous silica contour.

and

g|ass in terms of the surface fractal dimension. In the RMTD formalism, the orientational structure of a

rough surface is described by the surface orientation correla-
Il. RMTD RELAXATION MECHANISM tion function_ for intramolecular coupling and for a fixed in-
ternuclear distance as
Spin-lattice relaxation in adsorbate molecules is assumed

to result from intramoleculatdipolar or quadrupolarspin (Y2-1(99,00) Y2+ 1( Vs, 05))

interactions. The molecular orientation relative to the labora- g(s)= vy |2

tory frame is given by the azimuthal angleand the polar (1Yl

angled. For homonuclear dipolar interaction the spin-lattice =4m(Y5_1(90,90) Y2+ 1(Fs,0s)), 9

relaxation rate I, is given by the standard expression
) where 3g, ¢ and J,¢s are the polar coordinates of the
i: (ﬂ) 2211+ 1) (([FOP) surface orientations at=0 and at a distancg respectively.
T, \4m g(s) is the autocorrelation function of the spatial orientation
of surface sites separated by a curvilinear dista;ae the
N |<F(1)>|2)[Z(“’)+4I(2“’)]' (5) topologically two-dimensional surface space, that is, a
second-order plane representing the base on which the sur-
face roughness is measurezbe Appendix
The correlation function given in E¢8) can be expressed
in terms of the surface orientation correlation functig(s)
(representing the surface structuesd of the surface propa-
gator P(s,t) (standing for the displacement probability den-
sity along the surfage

v is the gyromagnetic ratidi Planck’s constant divided by
2, and ug the magnetic field constanb=27v=vyB, is
the angular Larmor frequency in the external fiBlgl F() is

a function of the polar coordinates 9, ¢, defining the ori-
entation of the internuclear vector relative to the external
magnetic field:

W_p-1x 1 o L 8T
F'Y=F =—35|nﬁcosﬁe =— Esz_l(ﬁ,go),

r r3 G(t)—fg(s)P(st f g(s)P(s,t)2ws ds (10
(6)
whereY,_,(9,¢) represents a spherical harmonics of rankUsing Parseval's theorem for the two-dimensional spatial
two. Fourier transforms of the surface correlation functi(k)

The intensity functiorf(w) is defined as the cosine Fou- and of the surface propagatp(k.t), leads to thek space
rier transform of the reduced dipolar correlation functionpicture of this formalism,

G(1),
1 o0
® G(t)= Hd*k= 2] S(k)p(k,t)dk,
I(w)ZZJ G(t)coq wt)dt. (7) (2 (2m)<Jo
0 (13)
The reduced dipolar correlation function is given by wherek is the wave number as the variable conjugats,to
and

EOVECY(1)) = [(EDY|2
FOOFC ) -[FD2

G(t)= ([FD|2)— |(FDy|2 S(k)=27kS(k). (12
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The conjugatek space variant of the surface correlation wherer,= 7 (k) depends on the propagator effective for sur-
function g(s) is termed the f{static radial orientational face diffusion according to Eq18). Note that any tempera-
structure factor.” It is given by the Hankel transform ture dependence is determined by the respective transport

parameteD or c.
S(k)=(27-r)2kJ’ g(s)Jo(ks)s ds (13
0 [ll. ORIENTATIONAL STRUCTURE FACTOR
. . . FOR FRACTAL SURFACES
implying the Bessel function of zeroth ordelz(ks). The _ . . _ _
orientational structure factof(k) and S(k) [Eq. (13)], ac- The density-density pair correlation function for surface

tually are formal equivalents of the static structure factorTactalsgs(s) describes correlations of surface elevations.

. ~ The orientation-orientation pair correlation functig(s), on
known from scattering theor§ (k) [see Eq(2)], as far as the other hand, reflects orientational correlations. Both func-

surface orientation pair correlations are considered instead o . - - intarrelated and indicate how fast the surface prop-

density-density correlations. How far the coincidence X erties change when a particle migrates along it. On the other

r}gand, in the case of infinitely extended and planar surfaces,

no correlation loss is associated with translations along the
w surface(compare Ref[27]).

p(k,t)=27-rj P(s,t)Jo(ks)s ds (14 In this context, surface fractals are characterized by
0 power-law related expressions for the density-density pair

é:é)_rrelation functiongs(s) [Eq. (4)] and the static structure

counterpart of the propagaté(s,t) likewise is

Surface propagators to be examined are a Gaussian displa

ment probability density factor S,(k) [Eq. (3)]. The densities at a distansdrom the
surface positiors=0 will only be correlated strongly i
1 exp{—s?/(4Dt)} < ¢ where ¢ is the correlation length of the surface. This
P(s,t)= 47 Dt (19 pecomes obvious if the distance vector is a tangent at the
surface positiors=0. The probability density that this dis-
and a Cauchy distribution tance vector points to a more remote element on the surface
will be large if the surface is smooth and, hence, slowly
ct varying in its orientation. Conversely, it will be small if the
P(S’t):ﬂ[(ct)z—Jrsz]g/z' (18 orientation correlation length is shorter than the distance
considered.

The respective displacement rates are determined by the dif- It is therefore not unreasonable to assume a close relation-

fusion coefficientD and the constant, which is of the di- ship between the density-density pair correlation function

mension of a velocity. 0sd(s) [Eq. (4)], and the orientation-orientation pair correla-
The Gaussian displacement probability density corretion functiong(s) [Eq. (9)]. A more elaborate consideration

sponds to ordinary diffusion. The Cauchy distribution, on theof this hypothesis will be presented in the Appendix. The

other hand, is expected for \ng walks[23], as predicted by surface correlation function is presumed to scale as

Bychuk and O’Shaughnessy for adsorbate surface diffusion >-D

: S e T : g(s)oxs® Vs, (21

in the strong-adsorption limit. For this limit, “bulk mediated

surface d|ffu5|on (BMSD) was predlcte(_j, provided that the Likewise the orientational structure factor

surface displacements are short relative to the root mean

squared displacements in the bulk on a time scale shorter

than the so-called retention tini8,24]. ~S(k)=f g(s)e '*sd%s (22)
Thek space representation of these surface propagators is
commonly given by 25,26 obeys
p(k,t)=e Y, 17 G(k)ockPs—4 (23

The mode correlation times are defined by in the topologically two-dimensional isotropic space, and,

according to the definition given in EL2),

1 1
=5 2(Gauss,  m=y (Cauchy, (18) S(k)ockPs3, (24)

respectively. , _ _ , IV. SPIN-LATTICE RELAXATION DISPERSION
The RMTD correlation and intensity functions read

A. Surface displacements by ordinary diffusion

G(t)= fms(k)e—tlfkdk (19) Ordinary surface diffusion is characterized by the Gauss-
(2m)%Jo ' ian propagator given in Eq15). Such a situation may arise
when the liquid adsorbate is permanently residing on the
o 27, surface, and merely translations along the surface occur. Ex-
Nw)= 2j S(k) ———dk, (200 amples are highly concentrated fine-particle or protein ag-
(2m)=Jo 1+ w7 glomerateg 28] and nonfreezing surface layei8,29]. The
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latter arise when the bulklike phase of the adsorbate is frosilica particle agglomeratd®]. These results, obtained for
zen, so that liquid adsorbate molecules can only diffusesurface displacements of water molecules, ranging froin 10
along the surface. to 10 nm, are consistent with the observations of Avnir
Under such circumstances the correlation and intensitgt al. [17] for such systems, valid on a nanometer scale.
functions for the RMTD relaxation mechanism on fractal Note that both Cauchy and Gaussian distributions predict
surfaces are found by combining Ed) either with Eq.(10)  he same frequency dependenceTgffor smooth surfaces.
or (11) using the Gaussian propagator givenin B) orits  pence, the statistics of surface diffusion cannot be distin-
k space counterpart according to Ef7) together with the 4 isheq in this case. A very remarkable feature of this limit
left-hand expression in Eq18). Inserting the respective is that spin-lattice relaxation becomes independent of tem-

power laws given in Eqg(21) or (24) provides perature because the displacement paramBtarsdc do not

G(t)(Dt)~ (Ps= )72 (25)  show up anymor¢see Egs(27) and(30)]. As a matter of
fact, the temperature dependences found in porous media are
and often strikingly weak(compare the data reported in Ref.
Z(w)oD~(Ps=2)2, 05~ 912 26) [29], for instance.

The opposite limitD,— 3, indicates an extremely rough
gnd rugged surface so that practically the whole Euclidean
Space is filled with the completely compressed “crumpled
membrane” representing the surface. In this case, the spin-
T,cDPs™2)/2,)(4=D92 (Gauss. (27) lattice relaxation dispersion is expected to display a square
root frequency dependendg = w? and a logarithmic rela-
tionshipT,« — 1/In(w7,) (Wherewr,<1), for the Gauss and
the Cauchy surface propagators, respectively. A square root

Non-Gaussian propagators arise for BME3]. The term  frequency dependence of the deuteron spin-lattice relaxation
“surface diffusion” implies that the adsorbate molecule re-time was actually found in globular protein agglomerates
sides initially as well as finally on the surface irrespective ofcompletely hydrated with heavy water in such a way that no
any bulk excursions in between. This condition is well ful- pulklike water phase existdd,30]. In this case the distribu-
filled in times shorter than the retention tirhe. Adsorbate tion of the static surface modes tends to be uniformly ran-
molecules then tend to stay in the vicinity of the surface,dom in a certain range.
provided they were initially adsorbédompare the computer
simulation reported in Ref9]). . V. APPLICATION TO A POROUS GLASS

The correlation and intensity functions for the RMTD re- AND DISCUSSION
laxation mechanism on fractal surfaces are derived in the
same way as before, with the only difference now being that The RMTD low-frequency spin-lattice relaxation mecha-
the propagator given in Eq16) or its k space counterpart, hism links dynamic properties of adsorbate molecules with
Eq. (17), in combination with the right-hand expression in the structural details of the adsorbent surface. This in par-
Eq. (18) are used. Again inserting the respective power lawgicular means that the fractal surface dimension can be evalu-

Therefore, one expects a low-frequency dispersion of th
spin-lattice relaxation time following

B. Surface displacements by [ey walks

given at Eqs(21) and(24) yields ated from the low-frequencyl; dispersion provided that

fractal behavior exists. Typical systems where this may be

G(t)oc(ct)~(Ps™2) (28)  pertinent are porous media with a relatively high surface-to-

volume ratio. In our previous work we have studied a num-
and ber of porous silica glass¢4,2,8 and fine-particle agglom-
¢ (P23 jf 2<p <3, erateq4,5] using field-_cycling NMR reIaxomgtr[B]. '

T w)o o2 _ - (29 Let us now consider the systems dimethylsulfoxide

—c s n(wr,) if D=3, (DMSO) and malononitrile filled into porous silica glass B10

] ] . with a mean pore dimension of 10 nm. Experimental details
where 7,=1/(ck,) is the surface displacement correlation .51 pe found in Refl8]. Figure 2 shows the protof, dis-
time corresponding to the upper wave-number cutoff valuepersion measured in DMSO and in the adsorbate diluted by
ky, i.e., to the static surface mode with the shortest wavejs geyterated version. The coincidence of the two data sets
length (compare Refs4,8]). The low-frequency spin-lattice royes that the spin interactions dominating spin-lattice re-
relaxation dispersion thus obeys laxation in DMSO are of an intramolecular nature. Two dif-

D.—2 3-D. ferent temperatures have been examined.
C fwT T if 2<De<3, At 270 K the bulklike DMSO in the pores is frozen and
Ty D2 1 f D.—3 (Cauchy (300  does not perceptibly contribute to the spin-lattice relaxation
IN(wTy,) ' s rate. It rather is the nonfreezing interfacial liquid existing in
the form of a one to two molecular diameters thick nonfreez-
ing surface layer that is responsible for the obserVedlis-
persion. In such a situation one expects that diffusion along
In the limit Dg=2, the spin-lattice relaxation dispersion the surface is normal, that is, it is governed by a Gaussian
for both the Cauchy and the Gaussian probability densitiepropagator.
approached ;(w)xw. Corresponding dispersion slopes, in-  On the other hand, at 291 K when all DMSO molecules
dicating Dg=2.0—2.1, were observed for densely packedare in the liquid state, the bulklike adsorbate phase contrib-

C. Limiting cases
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FIG. 2. Frequency dependence of the proton spin-lattice relax- FIG. 3. Frequency dependence of the proton spin-lattice relax-
ation time of dimethylsulfoxidéDMSO) in porous glass B10 above ation time of malononitrile in porous glass B10 above and below
and below the freezing temperature of the bulklike liquid. Data forthe freezing temperature of the bulklike liquid. The relaxation times
an isotopically diluted samplé80% DMSOd;) are also included. of the partially frozen sample at 275 K refer to the slowly decaying
The relaxation times of the partially frozen sample at 270 K refer tocomponent of the NMR signal corresponding to the nonfreezing
the slowly decaying component of the NMR signal correspondingsurface layers.
to the nonfreezing surface layers.

orientational structure factor. The exponent is estimated to be
utes, and the “bulk-mediated surface diffusion” mechanism_q 49+0.05, in coincidence with that given in E¢33).
can occur{24]. As already outlined above, the consequencerhys it is demonstrated that the same surface fractal dimen-
is that in the strong-adsorption limitvhich is pertinent hede  sjon comes out for a very different adsorbate species, but the
and for surface displacements short relative to diffusion insgme adsorbent.
the bulk, a Cauchy distribution applies for the propagation of - Note that similarT, dispersion slopes have also been ob-
adsorbate molecules along the surface. _ served with several other polar liquids in porous glass Bioran

At both temperatures a power-law behavior was foundz3p [29] with a mean pore dimension of 30 nm. This again
over three to four decades of the Larmor frequency. Thengicates that the surface structure acts on all adsorbate lig-
results are uids the same way. The only exception found in this context
is water on polar surfaces. The water anomaly in this and

0.73+0.04 —
Ty for T=270 K (31 other respects will be the subject of another study to be pub-
lished elsewhere.
and
Tyocp®o%00% for  T=201 K. (32) ACKNOWLEDGMENTS
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We infer a surface fractal dimension of
APPENDIX
D¢=2.5+0.04. (34
In this appendix a simplified model of the surface corre-

This value very favorably fits the range of typical literature lation function illustrating our working hypothesis will be
data evaluated for controlled porous glass on the basis of Rresented. Fractal surface structure can be studied using a
ray and neutron scattering experimef24]. profile analysis[11]. For simplicity, we will restrict our-

Consistent results are obtained with malononitrile filledselves to the consideration of a one-dimensional profile line
into the same porous glass. Figure 3 shows the proton spifftinctionh=h(x) across the surface. The quantitfx) is the
lattice relaxation time as a function of the frequency for ma-altitude of the surface measured as a function of the position
lononitrile in Bioran B10 at 275 Knonfreezing surface lay- X along the baseline. This baseline is chosen in such a way
ers and 291 K (adsorbate unfrozen Approaching the that(h(x))=0. A schematic illustration is given in Fig. 1.
dispersion slopes by power laws again suggests the same The profile lineh=h(x) is a random self-affine function
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whosg variance _scales with the length of a secicnon the g(Ax) :<ﬁ(x) ) ﬁ(x+Ax))
baseline according to
=(cog H(x+Ax)—Hx)])
2 2H
(h*(Ax))o[Ax[*", (A1) =(cog I (x+Ax)]cog 9(x)])
The lengthl of a self-affine curve can be measured with a +(si I(x+Ax)]sif I(x)]), (AB)

certain resolution defined, in our case, by the diameter of an o
adsorbate moleculéscales withAx (i.e., with the linear size  Whered in this context means the angle between the normal

of the systemas[10,13 vectors on the baseline and on the profile limeh(x). The
brackets denote averages over the baseline segineMote
that this is equivalent to averaging over any profile curve
section because of the self-affinity property.

We now make use of the relations

[(AX)oc(AX)M, (A2)

wheredy is the Hausdorff dimension of the surface profile

which is related to the Hurst exponédrtby dh

tarf 9(x)]= g =h’(x), (A7)

dy=2—-H. (A3)

§900)- e (A8)
The Hausdorff dimensiody refers to a topologically one- COJV(X)|= === "7, A
dimensional object embedded in the two-dimensional space; 1+h'2(x) dl
hence, E=d,<2. A surface, on the other hand, is a topo-
logically two-dimensional object whose surface afescales ) ! ) dx
with the area 4x)2 on the base plane according to sif 9(x)]= m:h X)5r (A9)

A(AX) % (AX)Ps. (A4)  wherel is the length measured along the profile lifie

“yardstick” units). The correlation functions in EA6) can
The range of the exponent, that is, the surface fractal dimerthen be evaluated according to
sionDyg, is 2=<D=<3. All these characteristic parameters are

now related to each other by the known lemfi&,32) (cog F(x+Ax)]cog H(x)])
1
D,=dy+1=3—H. (A5) = cog F(x+ Ax)]cog 3(x)]dl
[(AX) J{i(ax)]
The surface orientation correlation functigfs) was in- 1 Ax
troduced in terms of second-order spherical harmonics taken = |(A—X)J cog J(x+Ax)]dx
for the orientations of the surface normals atcarvilinear 0
distances [see Eq.(9)]. s is the displacement in th@opo- 1 Ax 1
logically two-dimensional second-order base plane corre- = dx (A10)
sponding to the average spatial orientation of theugh [(AX)Jo \J1+h'2(x+AX)

surface. In the present approach we consider a planar base
plane and interpret the surface correlation function directhf1(Ax) is the length of the curvé(x) on the line segment
as the correlation function of the normal vectors on a oneAx],

dimensional profile linen, separated by the Euclidean dis-

tanceAx. (sin (x+Ax)]sin H(x)])
This simplification appears to be justified as long as one 1
restricts oneself to the scaling-law discussion of this paper. = sin d(x+Ax)]sin 9(x)]d|
In particular, if the external magnetic field is assumed to be [(AX) J1i(ax]
perpendicular to the base line, the azimuth angle in the
second-order spherical harmonics has a fixed value. The cor- 1 (axh’(x)h'(x+Ax) q A1l
responding term in correlation functions of the type given in N [(AX)Jo \/m X (AL1)

Eqg. (9) hence cancels. Furthermore, the terms referring to the

polar angled can be rewritten in the forms sicosd  assuming small tilt angles, so that2(x)<1, the integrands
=3sin(20)=3sind and sifd=3[1—cos(29)]=3(1—cosd).  in Egs.(A10) and(A11) can be expanded and approximated
That is, the polar-angle terms in the second-order sphericab the lowest nontrivial order. Furthermore, inserting Eq.
harmonics can be traced back to linear trigonometric func{A2) thus leads to
tions of the double polar angle.

Keeping this in mind and identifying the distansevith  (cog 9(x+ Ax)]cog F(x)])oc(Ax)L ™ IH— 0O, ((Ax)31~H),
the baseline sectioAx introduced above, we consider the (A12)
correlation function of the normal vectors separated by a
distanceAx, (siM 9(x+ Ax)]si 9(x)]) = (Ax)32~9) (A13)
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where we have used the fact that the mean squared fluctusature of the pore. In two topological dimensions, the surface

tion of the profile line function scales according to EA1).  roughness is to be measured based on a second-order plane,

In the frame of this simplified consideration, it becomes cleamwhich ideally may take the form of a cylinder or a sphere.

that the leading term of the orientation correlation function  Since the second-order base plane also effects the surface

of fractal surfaces scales as orientation in addition to the random roughness in the sense
2D of the above treatment, the validity of our formalism is in-

glax)er (Ax)= . (A14) trinsically restricted to the correlation length of that
In this derivation we have tacitly assumed that the profileseécond-order base plane. Therefore, diffusive displacements

line is a random functioh=h(x) relative to a straight base- along the surface are to be measured .in curvilinear coordi—
line with the coordinate axis. In reality, the roughness of natesson the second-order base plane instead of the Euclid-

surfaces in porous glasses, for instance, is to be consider@@n distanceAx in Eq. (A14). The range of relevant dis-
relative to a baseline curvilinearly representing the mean curtances is then restricted g <<s<¢.
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