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Surface fractals probed by adsorbate spin-lattice relaxation dispersion

Tatiana Zavada and Rainer Kimmich
Sektion Kernresonanzspektroskopie, Universita¨t Ulm, 89069 Ulm, Germany
~Received 22 October 1998; revised manuscript received 5 February 1999!

Spin-lattice relaxation of strong adsorbates confined in disordered structures such as porous silica glass is
treated on the basis of a relaxation mechanism due to ‘‘reorientation mediated by translational displacements.’’
In such a situation the low-frequency spin-lattice relaxation dispersion beyond the regime where local reori-
entations dominate reflects molecular dynamics as well as the surface geometry on a length scale longer than
1 nm. It is shown that the power law frequently observed for the spin-lattice relaxation dispersion in porous
media can be traced back to surface fractality. The fractal properties of rough surfaces and the statistics
governing surface displacements enter explicitly in the expression for the dipolar correlation function. The
surface fractal dimension can thus be evaluated from the low-frequency spin-lattice relaxation dispersion
accessible by field-cycling NMR relaxometry.@S1063-651X~99!12905-2#

PACS number~s!: 61.43.Hv, 68.35.Ct, 68.35.Fx, 76.60.Es
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I. INTRODUCTION

Adsorbate molecules on surfaces may be subject to
reorientations about a preferential axis, depending on the
cal surface orientation and the binding properties. The co
sponding correlation times tend to be close to those in
bulk liquid. However, the reorientation of adsorbate m
ecules on these grounds is restricted to a limited solid-an
range as long as the adsorbate molecules reside at the
surface sites. On the other hand, in the ‘‘strong-adsorp
limit,’’ which typically applies to polar liquids confined by
polar surfaces, apparent correlation times up to eight ord
of magnitude longer than in the bulk have been obser
@1,2# using field-cycling NMR relaxometry@3#.

It has been shown that the low-frequency spin-lattice
laxation dispersion occurring under such circumstance
closely related to displacements along the surfaces. Intra
lecular nuclear dipole-dipole couplings@4,5# as well as
nuclear interactions with electron paramagnetic impurities
the surface@6,7# have been discussed. In this study we sol
refer to situations where the latter are definitely negligible
shown in Refs.@1,8#, for porous Bioran glasses, for instanc

As a low-frequency adsorbate relaxation mechan
dominating in diamagnetic matrices, ‘‘reorientation media
by translational displacements’’~RMTD! has been identified
@4#. That is, the low-frequency fluctuations of the spin co
plings occur due to adsorbate diffusion effectively taki
place along the~rough and shaped! surfaces. The mechanism
has also been considered in a recent computer simulation@9#.
Spin-lattice relaxation caused by RMTD was shown to be
combined effect of molecular dynamics and of the surfa
structure. That is, structural and dynamical features cont
ute to the reorientation process independently. For the
scription of the surface structure the orientational struct
factor has been introduced that is a two-dimensional a
logue to the static structure factor known in scattering the
@4,8#.

The main objective of this work is to extend the cons
eration to the case when the surface has fractal proper
Surface fractals describe the roughness in the range of s
invariancea0!r !j, wherea0 is the diameter of the adsor
PRE 591063-651X/99/59~5!/5848~7!/$15.00
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bate molecules employed to probe the surface, andj is the
correlation length@10–13# whose maximum value is typi
cally determined by the pore size. The surface roughnes
considered to consist of height fluctuations of the surfa
relative to a reference base plane of second order formin
topologically two-dimensional space. The actual rough s
face, i.e., the elevations relative to the base plane, is
scribed by the functionh5h(x,y) assumed to be self-affine
wherex andy are curvilinear coordinates in the base plan
and ^h&50 ~see Fig. 1!. Self-affinity means that the scalin
relation

h~lx,ly!5lHh~x,y! ~1!

is satisfied, whereH is called the ‘‘roughness’’~or Hurst!
exponent. The parameterH is related to the ‘‘surface fracta
dimension’’ Ds by Ds532H. Experimental data forDs in
the range 2<Ds<3 were measured with the aid of scannin
electron microscopy@14#, scattering@15,16# and adsorption
@17# for different porous materials. The valueDs52 indi-
cates a smooth surface, andDs53 a completely compresse
‘‘crumpled membrane.’’

There is a number of reports in the literature in whi
NMR parameters of systems such as cross-linked polym
cement gels, and blood plasma gels have been relate
fractals@18–21#. In the present work, we show how the su
face fractal dimensionDs can be deduced from the spin
lattice relaxation dispersion probed by field-cycling NM
relaxometry.

FIG. 1. Schematic representation of a rough surface and ad
bate molecules oriented perpendicular to the surface if adsorbe
5848 ©1999 The American Physical Society
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The static structure factor is defined as

S̃sc~k![^e2 ik•r&5E gsc~r!e2 ik•rd3r , ~2!

where gsc(r) is the pair correlation function or density
density correlation function~of the random surface! andk is
the wave number. In the limitk@j21, the structure factor
and the pair correlation function take the form@15#

S̃sc~k!}kDs26 ~3!

and

gsc~r !}12Ar32Ds, ~4!

respectively.
In the following, we will translate this approach into th

RMTD formalism describing the low-frequency spin-lattic
relaxation dispersion of adsorbate molecules on~fractal! sur-
faces. We will then analyze experimental data obtained w
liquid dimethylsulfoxide and malononitrile in a porous silic
glass in terms of the surface fractal dimension.

II. RMTD RELAXATION MECHANISM

Spin-lattice relaxation in adsorbate molecules is assum
to result from intramolecular~dipolar or quadrupolar! spin
interactions. The molecular orientation relative to the labo
tory frame is given by the azimuthal anglew and the polar
angleq. For homonuclear dipolar interaction the spin-latti
relaxation rate 1/T1 is given by the standard expression

1

T1
5S m0

4p D 2
3
2 g4\2I ~ I 11!~^uF (1)u2&

2u^F (1)&u2!@I~v!14I~2v!#. ~5!

g is the gyromagnetic ratio,\ Planck’s constant divided by
2p, and m0 the magnetic field constant.v52pn5gB0 is
the angular Larmor frequency in the external fieldB0 . F (1) is
a function of the polar coordinatesr, q, w, defining the ori-
entation of the internuclear vector relative to the exter
magnetic field:

F (1)5F (21)* 5
1

r 3
sinq cosq eiw5

1

r 3
A8p

15
Y2,21~q,w!,

~6!

whereY2,21(q,w) represents a spherical harmonics of ra
two.

The intensity functionI(v) is defined as the cosine Fou
rier transform of the reduced dipolar correlation functi
G(t),

I~v!52E
0

`

G~ t !cos~vt !dt. ~7!

The reduced dipolar correlation function is given by

G~ t !5
^F (1)~0!F (21)~ t !&2u^F (1)&u2

^uF (1)u2&2u^F (1)&u2
, ~8!
h

d

-

l

and decays from the initial value 1 to 0. The brackets in
cate averages over all initial and final orientations probed
a molecule on a time of the order ofT1. In the following we
will assume thatu^F (1)&u250 for simplicity.

For intramolecular interactions, the correlation functi
decay solely reflects molecular reorientations. For quad
pole interaction, the same relationship as given in Eq.~5!
between the spin-lattice relaxation rate and the reduced
tensity functions applies, apart from different prefacto
@3,22#.

In the bulklike phase, orientational correlations are c
back by fast, more or less isotropic rotational diffusion. Th
situation is to be distinguished from that of molecules a
sorbed on the surface, for which the RMTD mechani
comes into play on a time scale long compared with tha
restricted rotational diffusion occurring locally@3–5#. An ad-
sorbed molecule tends to be oriented in a preferential di
tion relative to the local surface. If displacements take pla
effectively along a rough and shaped surface, the adsor
molecule will change its orientation according to the surfa
contour.

In the RMTD formalism, the orientational structure of
rough surface is described by the surface orientation corr
tion function for intramolecular coupling and for a fixed in
ternuclear distance as

g~s!5
^Y2,21~q0 ,w0!Y2,11~qs ,ws!&

^uY2,21u2&

54p^Y2,21~q0 ,w0!Y2,11~qs ,ws!&, ~9!

where q0 , w0 and qs ,ws are the polar coordinates of th
surface orientations ats50 and at a distances, respectively.
g(s) is the autocorrelation function of the spatial orientati
of surface sites separated by a curvilinear distances in the
topologically two-dimensional surface space, that is,
second-order plane representing the base on which the
face roughness is measured~see Appendix!.

The correlation function given in Eq.~8! can be expressed
in terms of the surface orientation correlation functiong(s)
~representing the surface structure! and of the surface propa
gatorP(s,t) ~standing for the displacement probability de
sity along the surface!:

G~ t !5E g~s!P~s,t !d2s5E
0

`

g~s!P~s,t !2ps ds. ~10!

Using Parseval’s theorem for the two-dimensional spa
Fourier transforms of the surface correlation functionS̃(k)
and of the surface propagatorp(k,t), leads to thek space
picture of this formalism,

G~ t !5
1

~2p!2E S̃~k!p~k,t !d2k5
1

~2p!2E0

`

S~k!p~k,t !dk,

~11!

wherek is the wave number as the variable conjugate tos,
and

S~k![2pkS̃~k!. ~12!
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The conjugatek space variant of the surface correlatio
function g(s) is termed the ‘‘~static radial! orientational
structure factor.’’ It is given by the Hankel transform

S~k!5~2p!2kE
0

`

g~s!J0~ks!s ds ~13!

implying the Bessel function of zeroth order,J0(ks). The
orientational structure factorsS̃(k) andS(k) @Eq. ~13!#, ac-
tually are formal equivalents of the static structure fac
known from scattering theoryS̃sc(k) @see Eq.~2!#, as far as
surface orientation pair correlations are considered instea
density-density correlations. How far the coincidence
tends remains to be discussed below. The correspon
counterpart of the propagatorP(s,t) likewise is

p~k,t !52pE
0

`

P~s,t !J0~ks!s ds. ~14!

Surface propagators to be examined are a Gaussian disp
ment probability density

P~s,t !5
1

4p

exp$2s2/~4Dt !%

Dt
~15!

and a Cauchy distribution

P~s,t !5
1

2p

ct

@~ct!21s2#3/2
. ~16!

The respective displacement rates are determined by the
fusion coefficientD and the constantc, which is of the di-
mension of a velocity.

The Gaussian displacement probability density cor
sponds to ordinary diffusion. The Cauchy distribution, on
other hand, is expected for Le´vy walks @23#, as predicted by
Bychuk and O’Shaughnessy for adsorbate surface diffus
in the strong-adsorption limit. For this limit, ‘‘bulk mediate
surface diffusion’’~BMSD! was predicted, provided that th
surface displacements are short relative to the root m
squared displacements in the bulk on a time scale sho
than the so-called retention time@8,24#.

Thek space representation of these surface propagato
commonly given by@25,26#

p~k,t !5e2t/tk. ~17!

The mode correlation times are defined by

tk5
1

Dk2
~Gauss!, tk5

1

ck
~Cauchy!, ~18!

respectively.
The RMTD correlation and intensity functions read

G~ t !5
1

~2p!2E0

`

S~k!e2t/tkdk, ~19!

I~v!5
1

~2p!2E0

`

S~k!
2tk

11v2tk
2

dk, ~20!
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wheretk5tk(k) depends on the propagator effective for su
face diffusion according to Eq.~18!. Note that any tempera
ture dependence is determined by the respective trans
parameterD or c.

III. ORIENTATIONAL STRUCTURE FACTOR
FOR FRACTAL SURFACES

The density-density pair correlation function for surfa
fractals gsc(s) describes correlations of surface elevation
The orientation-orientation pair correlation functiong(s), on
the other hand, reflects orientational correlations. Both fu
tions are interrelated and indicate how fast the surface p
erties change when a particle migrates along it. On the o
hand, in the case of infinitely extended and planar surfa
no correlation loss is associated with translations along
surface~compare Ref.@27#!.

In this context, surface fractals are characterized
power-law related expressions for the density-density p
correlation functiongsc(s) @Eq. ~4!# and the static structure
factor S̃sc(k) @Eq. ~3!#. The densities at a distances from the
surface positions50 will only be correlated strongly ifs
,j where j is the correlation length of the surface. Th
becomes obvious if the distance vector is a tangent at
surface positions50. The probability density that this dis
tance vector points to a more remote element on the sur
will be large if the surface is smooth and, hence, slow
varying in its orientation. Conversely, it will be small if th
orientation correlation length is shorter than the distan
considered.

It is therefore not unreasonable to assume a close rela
ship between the density-density pair correlation funct
gsc(s) @Eq. ~4!#, and the orientation-orientation pair correl
tion functiong(s) @Eq. ~9!#. A more elaborate consideratio
of this hypothesis will be presented in the Appendix. T
surface correlation function is presumed to scale as

g~s!}s22Ds. ~21!

Likewise the orientational structure factor

S̃~k!5E g~s!e2 ik•sd2s ~22!

obeys

S̃~k!}kDs24 ~23!

in the topologically two-dimensional isotropic space, an
according to the definition given in Eq.~12!,

S~k!}kDs23. ~24!

IV. SPIN-LATTICE RELAXATION DISPERSION

A. Surface displacements by ordinary diffusion

Ordinary surface diffusion is characterized by the Gau
ian propagator given in Eq.~15!. Such a situation may aris
when the liquid adsorbate is permanently residing on
surface, and merely translations along the surface occur.
amples are highly concentrated fine-particle or protein
glomerates@28# and nonfreezing surface layers@8,29#. The
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latter arise when the bulklike phase of the adsorbate is
zen, so that liquid adsorbate molecules can only diffu
along the surface.

Under such circumstances the correlation and inten
functions for the RMTD relaxation mechanism on frac
surfaces are found by combining Eq.~7! either with Eq.~10!
or ~11! using the Gaussian propagator given in Eq.~15! or its
k space counterpart according to Eq.~17! together with the
left-hand expression in Eq.~18!. Inserting the respective
power laws given in Eqs.~21! or ~24! provides

G~ t !}~Dt !2(Ds22)/2 ~25!

and

I~v!}D2(Ds22)/2v (Ds24)/2. ~26!

Therefore, one expects a low-frequency dispersion of
spin-lattice relaxation time following

T1}D (Ds22)/2v (42Ds)/2 ~Gauss!. ~27!

B. Surface displacements by Le´vy walks

Non-Gaussian propagators arise for BMSD@24#. The term
‘‘surface diffusion’’ implies that the adsorbate molecule r
sides initially as well as finally on the surface irrespective
any bulk excursions in between. This condition is well fu
filled in times shorter than the retention timeth . Adsorbate
molecules then tend to stay in the vicinity of the surfa
provided they were initially adsorbed~compare the compute
simulation reported in Ref.@9#!.

The correlation and intensity functions for the RMTD r
laxation mechanism on fractal surfaces are derived in
same way as before, with the only difference now being t
the propagator given in Eq.~16! or its k space counterpart
Eq. ~17!, in combination with the right-hand expression
Eq. ~18! are used. Again inserting the respective power la
given at Eqs.~21! and ~24! yields

G~ t !}~ct!2(Ds22) ~28!

and

I~v!}H c2(Ds22)vDs23 if 2 ,Ds,3,

2c2(Ds22)ln~vtu! if Ds53,
~29!

where tu51/(cku) is the surface displacement correlatio
time corresponding to the upper wave-number cutoff val
ku , i.e., to the static surface mode with the shortest wa
length~compare Refs.@4,8#!. The low-frequency spin-lattice
relaxation dispersion thus obeys

T1}H cDs22v32Ds if 2 ,Ds,3,

2cDs22
1

ln~vtu!
if Ds53.

~Cauchy! ~30!

C. Limiting cases

In the limit Ds52, the spin-lattice relaxation dispersio
for both the Cauchy and the Gaussian probability densi
approachesT1(v)}v. Corresponding dispersion slopes, i
dicating Ds.2.022.1, were observed for densely pack
-
e

ty
l

e

f
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e
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-

s

silica particle agglomerates@5#. These results, obtained fo
surface displacements of water molecules, ranging from1

to 102 nm, are consistent with the observations of Avn
et al. @17# for such systems, valid on a nanometer scale.

Note that both Cauchy and Gaussian distributions pre
the same frequency dependence ofT1 for smooth surfaces
Hence, the statistics of surface diffusion cannot be dis
guished in this case. A very remarkable feature of this lim
is that spin-lattice relaxation becomes independent of te
perature because the displacement parametersD andc do not
show up anymore@see Eqs.~27! and ~30!#. As a matter of
fact, the temperature dependences found in porous media
often strikingly weak~compare the data reported in Re
@29#, for instance!.

The opposite limit,Ds→3, indicates an extremely roug
and rugged surface so that practically the whole Euclid
space is filled with the completely compressed ‘‘crumpl
membrane’’ representing the surface. In this case, the s
lattice relaxation dispersion is expected to display a squ
root frequency dependenceT1}v1/2 and a logarithmic rela-
tionshipT1}21/ln(vtu) ~wherevtu!1), for the Gauss and
the Cauchy surface propagators, respectively. A square
frequency dependence of the deuteron spin-lattice relaxa
time was actually found in globular protein agglomera
completely hydrated with heavy water in such a way that
bulklike water phase existed@4,30#. In this case the distribu-
tion of the static surface modes tends to be uniformly r
dom in a certain range.

V. APPLICATION TO A POROUS GLASS
AND DISCUSSION

The RMTD low-frequency spin-lattice relaxation mech
nism links dynamic properties of adsorbate molecules w
the structural details of the adsorbent surface. This in p
ticular means that the fractal surface dimension can be ev
ated from the low-frequencyT1 dispersion provided tha
fractal behavior exists. Typical systems where this may
pertinent are porous media with a relatively high surface-
volume ratio. In our previous work we have studied a nu
ber of porous silica glasses@1,2,8# and fine-particle agglom-
erates@4,5# using field-cycling NMR relaxometry@3#.

Let us now consider the systems dimethylsulfoxi
~DMSO! and malononitrile filled into porous silica glass B1
with a mean pore dimension of 10 nm. Experimental deta
can be found in Ref.@8#. Figure 2 shows the protonT1 dis-
persion measured in DMSO and in the adsorbate diluted
its deuterated version. The coincidence of the two data
proves that the spin interactions dominating spin-lattice
laxation in DMSO are of an intramolecular nature. Two d
ferent temperatures have been examined.

At 270 K the bulklike DMSO in the pores is frozen an
does not perceptibly contribute to the spin-lattice relaxat
rate. It rather is the nonfreezing interfacial liquid existing
the form of a one to two molecular diameters thick nonfre
ing surface layer that is responsible for the observedT1 dis-
persion. In such a situation one expects that diffusion alo
the surface is normal, that is, it is governed by a Gauss
propagator.

On the other hand, at 291 K when all DMSO molecul
are in the liquid state, the bulklike adsorbate phase cont
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5852 PRE 59TATIANA ZAVADA AND RAINER KIMMICH
utes, and the ‘‘bulk-mediated surface diffusion’’ mechanis
can occur@24#. As already outlined above, the consequen
is that in the strong-adsorption limit~which is pertinent here!
and for surface displacements short relative to diffusion
the bulk, a Cauchy distribution applies for the propagation
adsorbate molecules along the surface.

At both temperatures a power-law behavior was fou
over three to four decades of the Larmor frequency. T
results are

T1}n0.7360.04 for T5270 K ~31!

and

T1}n0.5460.04 for T5291 K. ~32!

Evaluating these power laws according to the Gauss
and Cauchy distributions, respectively, leads to a comm
orientational structure factor obeying

S~k!}k20.560.04. ~33!

We infer a surface fractal dimension of

Ds52.560.04. ~34!

This value very favorably fits the range of typical literatu
data evaluated for controlled porous glass on the basis
ray and neutron scattering experiments@31#.

Consistent results are obtained with malononitrile fill
into the same porous glass. Figure 3 shows the proton s
lattice relaxation time as a function of the frequency for m
lononitrile in Bioran B10 at 275 K~nonfreezing surface lay
ers! and 291 K ~adsorbate unfrozen!. Approaching the
dispersion slopes by power laws again suggests the s

FIG. 2. Frequency dependence of the proton spin-lattice re
ation time of dimethylsulfoxide~DMSO! in porous glass B10 abov
and below the freezing temperature of the bulklike liquid. Data
an isotopically diluted sample~80% DMSO-d6) are also included.
The relaxation times of the partially frozen sample at 270 K refe
the slowly decaying component of the NMR signal correspond
to the nonfreezing surface layers.
e

n
f

d
e

n
n

x

in-
-

me

orientational structure factor. The exponent is estimated to
20.4960.05, in coincidence with that given in Eq.~33!.
Thus it is demonstrated that the same surface fractal dim
sion comes out for a very different adsorbate species, but
same adsorbent.

Note that similarT1 dispersion slopes have also been o
served with several other polar liquids in porous glass Bio
B30 @29# with a mean pore dimension of 30 nm. This aga
indicates that the surface structure acts on all adsorbate
uids the same way. The only exception found in this cont
is water on polar surfaces. The water anomaly in this a
other respects will be the subject of another study to be p
lished elsewhere.
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APPENDIX

In this appendix a simplified model of the surface cor
lation function illustrating our working hypothesis will b
presented. Fractal surface structure can be studied usi
profile analysis@11#. For simplicity, we will restrict our-
selves to the consideration of a one-dimensional profile
functionh5h(x) across the surface. The quantityh(x) is the
altitude of the surface measured as a function of the posi
x along the baseline. This baseline is chosen in such a
that ^h(x)&50. A schematic illustration is given in Fig. 1.

The profile lineh5h(x) is a random self-affine function

x-

r

o
g

FIG. 3. Frequency dependence of the proton spin-lattice re
ation time of malononitrile in porous glass B10 above and bel
the freezing temperature of the bulklike liquid. The relaxation tim
of the partially frozen sample at 275 K refer to the slowly decay
component of the NMR signal corresponding to the nonfreez
surface layers.
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PRE 59 5853SURFACE FRACTALS PROBED BY ADSORBATE SPIN- . . .
whose variance scales with the length of a sectionDx on the
baseline according to

^h2~Dx!&}uDxu2H. ~A1!

The lengthl of a self-affine curve can be measured with
certain resolution defined, in our case, by the diameter o
adsorbate molecule.l scales withDx ~i.e., with the linear size
of the system! as @10,13#

l ~Dx!}~Dx!dH, ~A2!

wheredH is the Hausdorff dimension of the surface profi
which is related to the Hurst exponentH by

dH522H. ~A3!

The Hausdorff dimensiondH refers to a topologically one
dimensional object embedded in the two-dimensional sp
hence, 1<dH<2. A surface, on the other hand, is a top
logically two-dimensional object whose surface areaA scales
with the area (Dx)2 on the base plane according to

A~Dx!}~Dx!Ds. ~A4!

The range of the exponent, that is, the surface fractal dim
sionDs , is 2<Ds<3. All these characteristic parameters a
now related to each other by the known lemma@13,32#

Ds5dH11532H. ~A5!

The surface orientation correlation functiong(s) was in-
troduced in terms of second-order spherical harmonics ta
for the orientations of the surface normals at a~curvilinear!
distances @see Eq.~9!#. s is the displacement in the~topo-
logically two-dimensional! second-order base plane corr
sponding to the average spatial orientation of the~rough!
surface. In the present approach we consider a planar
plane and interpret the surface correlation function direc
as the correlation function of the normal vectors on a o
dimensional profile line,nW , separated by the Euclidean di
tanceDx.

This simplification appears to be justified as long as o
restricts oneself to the scaling-law discussion of this pap
In particular, if the external magnetic field is assumed to
perpendicular to the base line, the azimuth angle in
second-order spherical harmonics has a fixed value. The
responding term in correlation functions of the type given
Eq. ~9! hence cancels. Furthermore, the terms referring to
polar angleq can be rewritten in the forms sinq cosq

51
2sin(2q)51

2sinq̃ and sin2q51
2@12cos(2q)#51

2(12cosq̃).
That is, the polar-angle terms in the second-order sphe
harmonics can be traced back to linear trigonometric fu
tions of the double polar angle.

Keeping this in mind and identifying the distances with
the baseline sectionDx introduced above, we consider th
correlation function of the normal vectors separated b
distanceDx,
n

e;

n-

en

se
y
-

e
r.
e
e

or-

e

al
-

a

g~Dx!5^nW ~x!•nW ~x1Dx!&

5^cos@q~x1Dx!2q~x!#&

5^cos@q~x1Dx!#cos@q~x!#&

1^sin@q~x1Dx!#sin@q~x!#&, ~A6!

whereq in this context means the angle between the norm
vectors on the baseline and on the profile lineh5h(x). The
brackets denote averages over the baseline segmentDx. Note
that this is equivalent to averaging over any profile cur
section because of the self-affinity property.

We now make use of the relations

tan@q~x!#5
dh

dx
[h8~x!, ~A7!

cos@q~x!#5
1

A11h82~x!
5

dx

dl
, ~A8!

sin@q~x!#5
h8~x!

A11h82~x!
5h8~x!

dx

dl
, ~A9!

where l is the length measured along the profile line~in
‘‘yardstick’’ units!. The correlation functions in Eq.~A6! can
then be evaluated according to

^cos@q~x1Dx!#cos@q~x!#&

5
1

l ~Dx!
E

[ l (Dx)]
cos@q~x1Dx!#cos@q~x!#dl

5
1

l ~Dx!
E

0

Dx

cos@q~x1Dx!#dx

5
1

l ~Dx!
E

0

Dx 1

A11h82~x1Dx!
dx ~A10!

@ l (Dx) is the length of the curveh(x) on the line segmen
Dx#,

^sin@q~x1Dx!#sin@q~x!#&

5
1

l ~Dx!
E

[ l (Dx)]
sin@q~x1Dx!#sin@q~x!#dl

5
1

l ~Dx!
E

0

Dx h8~x!h8~x1Dx!

A11h82~x1Dx!
dx. ~A11!

Assuming small tilt angles, so thath82(x)!1, the integrands
in Eqs.~A10! and~A11! can be expanded and approximat
to the lowest nontrivial order. Furthermore, inserting E
~A2! thus leads to

^cos@q~x1Dx!#cos@q~x!#&}~Dx!12dH2O1„~Dx!3(12dH)
…,

~A12!

^sin@q~x1Dx!#sin@q~x!#&}~Dx!3(12dH), ~A13!
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where we have used the fact that the mean squared fluc
tion of the profile line function scales according to Eq.~A1!.
In the frame of this simplified consideration, it becomes cl
that the leading term of the orientation correlation functi
of fractal surfaces scales as

g~Dx!}~Dx!22Ds. ~A14!

In this derivation we have tacitly assumed that the pro
line is a random functionh5h(x) relative to a straight base
line with the coordinate axisx. In reality, the roughness o
surfaces in porous glasses, for instance, is to be consid
relative to a baseline curvilinearly representing the mean
mp

try

e

e

-

a-

r

e

ed
r-

vature of the pore. In two topological dimensions, the surfa
roughness is to be measured based on a second-order p
which ideally may take the form of a cylinder or a sphere

Since the second-order base plane also effects the su
orientation in addition to the random roughness in the se
of the above treatment, the validity of our formalism is i
trinsically restricted to the correlation lengthj of that
second-order base plane. Therefore, diffusive displacem
along the surface are to be measured in curvilinear coo
natess on the second-order base plane instead of the Euc
ean distanceDx in Eq. ~A14!. The range of relevant dis
tances is then restricted toa0,s,j.
, J.

.

ay
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at.
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